Click here to sign in with or
by Chen Na, Chinese Academy of Sciences
A research team led by Prof. Yu Hanqing from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences, collaborating with Prof. Menachem Elimelech from Yale University, developed a new water decontamination technology, the direct oxidative transfer process (DOTP). The study was published in Nature Communications.
Previous investigations showed that the removal of organic pollutants from water depends on an advanced oxidation process (AOP), which requires external energy or chemical input. However, it was discovered that the electron equivalent released by the pollutants was much higher than the oxidant-consumed electron equivalent, which could not be explained by AOP.
Researchers clarified that DOTP, fundamentally different from AOP, dominated the heterogeneous oxidative system. In DOPT, a direct redox reaction between pollutants and oxidants occurred on the catalyst surface. Products formed were stabilized and spontaneously underwent surface polymerization or coupling reaction. As a result, products accumulated on the catalyst surface, contributing to the effective elimination of aquatic pollutants.
The study reveals that the heterogeneous catalyst plays an important role in the activation, stabilization and accumulation of reactants or products. Additionally, it features low oxidant consumption, high pollutant accumulating capacity, and zero toxic byproducts. Thus, DOTP is expected to find further applications in water pollution control and wastewater treatment. Explore further Going platinum: A non-toxic catalyst for clean, re-usable water More information: Ying-Jie Zhang et al, Simultaneous nanocatalytic surface activation of pollutants and oxidants for highly efficient water decontamination, Nature Communications (2022). DOI: 10.1038/s41467-022-30560-9 Journal information: Nature Communications
Provided by Chinese Academy of Sciences Citation: Direct oxidative transfer process contributes to water purification (2022, June 27) retrieved 2 July 2022 from https://phys.org/news/2022-06-oxidative-contributes-purification.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.More from Physics Forums | Science Articles, Homework Help, Discussion
Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).
Please select the most appropriate category to facilitate processing of your request
Thank you for taking time to provide your feedback to the editors.
Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.
Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.
Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.
Medical research advances and health news
The latest engineering, electronics and technology advances
The most comprehensive sci-tech news coverage on the web
This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.